
Non-2kF charge density wave induced by phonon dispersion in one-dimensional Peierls

conductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 8287

(http://iopscience.iop.org/0953-8984/7/43/009)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 22:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 7 (1995)8287-8315. Printed in the UK 

Non-2k~ charge density wave induced by phonon dispersion in 
one-dimensional Peierls conductors 
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Laboratoire IRon Brillouin, CEA-CNRS. CE?Aaclay, 91 191 Cif-sur Yvene Cedex, France 

Received 31 May 1995, in final form 27 Augnst 1995 

Abstract. Standard Peierls theory predicts that the wave-vector of the charge density wave 
(CDW) induced by the electron-phonon coupling in the ground-state of a one-dimensional 
conductor is twice the Fermi wave-vector Z k p .  At moderately large electron-phonon coupling. 
beyond the TBA (transition by breaking of analyticity). it is known th3t this CDW becomes an 
anay of interacting bipolarons. In the simplest models, such as the ID adiabatic Holstein model, 
the bipolaron interactions are repulsive and the ground state remains a 2kp  CDW of equidistant 
bipolarons. We show that (apparently) minor changes in the phonon spectrum of the model 
induae extra elastic forces between the b ipohns .  which could break the bipolaronic 2h CDW 
ordering. 

'Ibis effect is studied in detail in the modified ID Holstein model, where the optical phonon 
has a non-zero dispersion which is chosen positive in order that an extra force that appears 
between the bipolarons be attractive. The Coulomb forces between the bipolarons ?.re initially 
neglected. An accurate numerical study modelled on the standard analysis of multiphase points 
confirms that, in a large pan of lhe phase diagram, the CDW ground state separates in two 
phases, which correspond to two CDW with different 2 k ~  wave-vectors (which are generally 
commensurate) and thus different electronic densities. These separntions, into phases called 
either 'parent' or 'non-parent', are studied on the basis of the Farey construction of rational 
numbers. 

The long-range Coulomb intenction between the charged bipolarons, forbids any macrowpic 
phase s e p t i o n  in two phases with different electronic densities. The bipolaron structure then 
has to be a periodic sequence of altemate domains of the two CDW phases on the microscopic 
scale. The resulting structure is a new CDW with a modulation wave-vector that is not 2kF. 

We suggest that the aberrant wave-vector observed in the real CDW system (TaSea)rl could 
be interpreted along the ideas developed in this paper. Although this compound shares many 
of the usual propenies of qmsi-me-dimensional conductors with CDW, the component of the 
modulation wave-\'ector 0.085c* in the ch in  direction is. unusually, quite different from the 
value 2kp  = C* expected from band filling. The CDW in (TaSephl could correspond to a non- 
standard bipolamn ordering due to a strong attractive elastic interaction between the bipolamns 
along the chain competing with lhe long-range Coulomb forces. 

1. Introduction 

According to standard Peierls-Frohlich theory, the ground-state of a one-dimensional 
electronic system coupled to phonons is always a charge density wave (CDW) associated 
with a periodic lattice distortion (PLD) with the same wave-vector which is twice the Fermi 
wave-vector 2 k ~ .  It can be either commensurate or incommensurate with the lattice wave- 
vector according to the band filling [1,2]. Peierls-Frohlich theory is basically a theory valid 
at small electron-phonon coupling. 

Some years ago, Noguera and Pouget [9,1 I ]  improved the standard mean field treatment 
of Peierls-Frohlich CDW by taking into account the curvature of the energy dispersion 
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curve of the bare electron versus its wave-vector (which yields a finite effective mass for 
the electron). On this basis they claimed to explain the observed wave-vector variation 
as a function of temperature in many real CDW and, i n  particular, in blue bronze. This 
result can be questioned for technical reasons and, because it contradicts earlier results by 
Qutmerais [lo], Noguera and Pouget noted a second possible interesting contribution to the 
CDW wave-vector variation, which comes from the dispersion of the phonon curve that we 
are going to consider here. It is the purpose of this paper to prove that this effect may have 
more drastic physical consequences. The wave-vector of the CDW may no longer be 2 k ~ ,  
and the CDW can be broken into different phases with diFferent electronic densities. We 
only focus on the properties at O K  of the CDW ground state. 

Before describing our results we recall, in section 2, some of our early results which 
were not predicted by standard Peierls-Frohlich theory and present, on this basis, the 
qualitative ideas of the origins of this work. Section 3 describes the modified Holstein 
model and notations. The single bipolaron and their pair interaction are calculated in 
section 4. Section 5 describes the many-bipolaron ground state and their phase separations. 
Finally, in the concluding remarks of section 6, we discuss the role of Coulomb forces and 
the possible physical consequences of this work. An interpretation of the anomalous value 
for the observed CDW wave-vector in (TaSe&I is suggested. 

J-L Raimbauli and S Aubry 

2. Standard ordering for 1D bipolaronic ground states 

It has been shown through an accurate numerical analysis that, for the incommensurate 
CDW, there is a second-order phase transition between a Peierls-Frohlich CDW and a 
bipolaronic CDW at a moderately large electron-phonon coupling [3]. This transition, 
called ‘transition by breaking of analyticity’ (TBA), corresponds physically to a metal- 
insulator transition by extinction of the Frohlich conductivity due to lattice pinning of the 
CDW. This transition is associated with a gap opening in the phonon spectrum and the 
system becoming charge defective. In the commensurate case there is no TBA, because 
the CDW is always pinned to the lattice and thus is insulating at OK. A prototype model 
that exhibits the characteristic features associated with CDW is the ID adiabatic Holstein 
model (41. This model contains only one dimensionless reduced parameter, but the physical 
features that are found for it  extend, for the most part, to more realistic although more 
complicated CDW models. 

This model represents a single electron band with onsite coupling with a dispersionless 
optical phonon band. It was initially introduced for exhibiting polarons and bipolarons. A 
single polaron corresponds to a localized electron that is self-trapped in the potential well 
created by the lattice distortion generated by the electron-phonon coupling. When there is 
no electron-elecnon repulsion, it takes less energy for two electrons to form a bipolaron 
where the two electrons self-localize in the same electronic state but with opposite spins. 
A priori, this concept only looks clear when the electron density is weak enough in order 
that the electronic states almost do not overlap. In fact, i t  can be extended at any electronic 
density, even when the bipolaron wavefunctions overlap. 

It has been proven for this model [5,6] that, when the electron-phonon coupling is 
large enough, there are infinitely many bipolaronic configurations, most of them being 
chaotic. More precisely, considering the total energy of the system while the electrons are 
i n  their ground state for a given set of onsite lattice distortions (nil, the variational energy 
which depends on [ U , ]  exhibits infinitely many local minima. Each of these minima can 
be associated with a set of pseudo-spins (ui) characterizing the spatial distribution of a 
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bipolaronic configuration (a, = 1 means that a bipolaron is present at site i, and ai = 0 
means no bipolaron). Reciprocally, for each set of pseudo-spins (a,], there exists a well 
defined local minimum of the corresponding bipolaronic configuration. Since the set {U,]  

is arbitrary, most of these bipolaronic configurations are chaotic. 
At large electron-phonon coupling, the ground state of the system is a bipolaronic 

structure [5]. which corresponds to an m a y  of bipolarons with a special ordering 
superimposed on the lattice. and which is described by a special set of pseudo-spins. This 
special ordering is a priori unknown. However, in the simple I D  Holstein model, this 
ground state is found numerically to correspond to equidistant bipolarons on the discrete 
lattice associated with the pseudo-spin configuration [3]: 

where x (x )  is a 1-periodic function defined as 

and < is the band filling (or density of bipolarons per site): a is an arbitrary phase. The 
resulting structure turns out to be a bipolaronic CDW with the same wave-vector 2kF as 
predicted by Peierls-Frohlich. At the TBA, the size of the bipolarons diverges and the 
bipolaronic CDW becomes a Peierls-Frohlich CDW. 

The fact that the wave-vector of the bipolaronic CDW in 1D models remains at 2 k ~  
is not a universal result. The resulting structure of the bipolarons is determined by the 
interaction potential between the bipolarons. These interactions can be formally represented 
at low temperature by a pseudo-spin Hamiltonian H((a;]) which depends on (U;). Although 
this Hamiltonian contains in principle all possible multi-spin interactions, let us consider 
only the pair interactions J(n)a;q+" between two bipolarons which become the dominant 
terms at large coupling: J ( n )  = Jel(n) + J,h(n) + JcOul(n) can be split (approximately) 
into the sum of three components. The first interaction, Jel(n), originates from the overlap 
between the orbitals of two bipolarons. It is repulsive and decays exponentially as a function 
of their relative distance, n, as well as the electronic wavefunction of a single bipolaron. 
The second interaction, Jph(n). is mediated by the elastic deformation of the phonon field 
generated by two polarons. This interaction also decays exponentially as a function of 
the relative distance, but its sign depends on the details of the phonon dispersion. It may 
be attractive, repulsive or oscillating as a function of n.  Tbe third interaction, Jcoul(n), 
represents the long-range Coulomb forces between the bipolarons which have twice the 
electronic charge; it is repulsive at all distances. The existence of these interactions between 
the bipolarons was quoted in an earlier paper by Emin [7] and also suggested by Alexandrov 
and co-workers [SI. 

In the original Holstein model there is no phonon dispersion, i.e. the lattice distortion 
at site i does not interact with the lattice distortion at a different site j and the Coulomb 
force is not taken into account. It appears that the bipolaron interaction J ( n )  behaves as 
Jet@)  and is repulsive at all distances. The net result, confirmed by numerical observations, 
is that the ground state is obtained for equidistant bipolarons, i.e. a 2 k ~  bipolaronic CDW. 

In real systems there is generally a phonon dispersion, which can induce non-repulsive 
forces between the bipolarons. The purpose of this paper is to analyse a simple modified 
Holstein model with a phonon dispersion. This modified model was already proposed by 
Holstein as a more realistic model for real molecular systems. For this purpose, we add a 
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small coupling between the distortions at neighbouring sites which produces an attractive 
interaction between the bipolarons. Because of this apparently minor change in the model, 
the 2 k ~  bipolaronic CDW undergoes separation between two phases with different electronic 
densities when increasing the electron-phonon coupling beyond relatively small values. This 
situation contrasts with those numerically observed in the Falicov-Kimball model [34]. 
where phase separations between phases with different electric charges are found at small 
coupling while the periodic 2kF structure is recovered at large coupling. The role of the 
long-range Coulomb forces, which is not considered in the main part of the paper, is briefly 
discussed next. The occurrence of phase separation in real systems is then prevented, and 
a new CDW with a wave-vector which is not 2 k ~ .  appears. 

J-L Raimbault and S Aubry 

3. The adiabatic Holstein model 

In this section we recall the definition, and describe early results, relative to the original 
and extended adiabatic Holstein models [4]. The extended model consists of a single band 
of electrons linearly coupled to a single optical branch of phonons with dispersion. Within 
the standard adiabatic approximation used for studying CDW, the quantum kinetic energy 
terms of the atoms are neglected, because the atoms are supposed to be much heavier than 
the electrons. In addition, the amplitude of the PLD has to be assumed to be much larger 
than the amplitude of the zero-point motion of the atoms. The electronic Hamiltonian can 
be written in the extended form as 

where U = (U;] is the set of lattice distortions which are scalar variables, c; and c;, 
are the creation and annihilation operators of an electron at site i with spin U = (t, $1. 
ni = E,, c;ci, is the electron density operator at site i ,  (i, j )  means that the sum is done 
over all pairs of nearest neighbour sites i ,  j ,  A is the electron-phonon coupling constant, p 
is a chemical potential which fixes the band filling, m the mass of each atom, the bare 
phonon frequency, and y is the parameter that measures the phonon dispersion. The lattice 
stability requirement implies IyI e 1/2. In one dimension, 4T is the bandwidth. We first 
discuss some results obtained in the simplest case y = 0, and then describe the case when 
Y # 0. 

3.1. Optical phonons without dispersion y = 0 

This situation corresponds to the original Holstein model. The ground state of this model 
is obtained by minimizing (@,lH(u)l@) both over the electronic state @ and U. The 
extremalization of (@IH(u) l@)  with respect to U; readily yields that the static lattice 
distortion U ;  and the electronic density pi = (@lnil@) = (ni) are proportional: 

h 
moi  

ui - -pi  (4) 

The continuum version of this model (where the site index i is taken as a continuous 
variable x) has been exactly solved by Shastry [IZ]. A 2 k ~  CDW p ( x )  has been found 
for all electron-phonon couplings; p ( x )  depends smoothly on the model parameters and 
there is no phase transition. In the weak-coupling limit, the modulation of the electronic 
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density p ( x )  is the sine function expected by Peierls-Frohlich theory. In the strong-coupling 
limit, p ( x )  exhibits in each period a single sharp peak corresponding to the charge of two 
electrons. The width of this peak goes to zero as I j X .  The continuum approximation 
always yields a Peierls-Frohlich CDW with a zero-gap phason mode, which is unpinned 
to the lattice (since the lattice discreteness has been neglected). These CDW can carry a 
Frohlich supercurrent. 

The continuum approximation breaks down at moderately large coupling when the width 
of the peaks becomes comparable with the lattice spacing, and then there is phase transition. 
The numerical studies on a discrete lattice only partially agree with this continuous model. 
On the one hand, it is confirmed that the CDW ground state indeed remains a 2 k p  CDW 
at all coupljngs. The electronic density can be written as p, = p(2kpia +CY) where p ( x )  
is called the hull function [3], a is the lattice spacing and CY is an arbitrary phase. On the 
other hand, we know that the CDW has to become bipolaronic [5] at large enough coupling, 
and it does. For any band filling (, there is a critical coupling kc(() for the dimensionless 
constant 

k = XJ’ Tmwi (5) 

such that the hull function p ( x )  becomes a discontinuous function. This transition appears 
to be similar in all respects, including the same universality classes for the critical behaviour 
at the TBA, as those of the Frenkel-Kontorowa model [14]. 

In this later model, a detailed and exact theory was built. It connects this phenomena 
with the breaking of Kolmogorov-Arnol’d-Maser tori in the standard map [3]. When < 
is a ‘good’ irrational number (most of them are ’good’), $(() is non-zero but becomes 
generally zero when ( is rational or ‘almost rational‘ (Liouville numbers). This transition 
is characterized by a gap opening in the phason spectrum and the extinction of Frohlich 
conductivity. However, we a150 find that, at large coupling, the electron density becomes 
sharply peaked at single sites, as also expected from the result of Shastiy. 

The strong electron-phonon coupling limit (called atomic by Holstein) is obtained when 
the bandwidth vanishes ( T  = 0). Because of a formal analogy with the theory of dynamical 
systems, we relabelled this limit the ‘anti-integrable limit’ [13]. The Hamiltonian reduces 
to 

Since ui are scalar variables, the electronic eigenstates of H are those of the operator 
ni = nit -!- nil. We have pi = 2a; = (ai? + qir) with (ai? = 0 or 1, aiir = 0 or 1 and 
a; = 0,112 or 1). 

Because of (41, the total energy can be written as 

where 

h2 Tk2 U=--- _ -  
m a t  2 
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is the binding energy for two polarons forming a bipolaron in the anti-integrable limit. In 
this limit T = 0, we fix fi  = -U in order that the electronic density can be fixed at an 
arbitrary value, since the energy at a given site is the same either with a bipolaron or with 
a hole. Without a magnetic field, the existence of polarons U' = 112 costs more energy so 
that the ground state in the atomic limit naturally appears as a degenerate distribution of 
bipolarons and holes (uj = 0 or I) ,  which is generally chaotic without long-range order. 

The hopping term, which has been neglected in the anti-integrable limit, introduces 
an interaction between the bipolarons. In the large electron-phonon coupling limit, many 
standard perturbation theories with respect to the hopping term T (see, for example, [S, 151) 
yield, at lowest order, a repulsive interaction between nearest-neighbour bipolarons: 

J-L Raimbaiilt and S Aubry 

For two bipolarons we pointed out [3] that this interaction remains repulsive at all 
distances, and decays exponentially as a function of their distance?: 

with 

(In this notation ((i. j )  # ( j ,  i).) If one neglects the other multispin interactions, which 
become important for lower electron-phonon couplings. the sequence ( I  1) fulfills at large 
k, the convexity condition: 

J,l(n + I )  + Jel(n - I )  - ZJ,&i) > 0 for n 2 2 (12) 

which implies that the ground state [17-20] is obtained for the sequence of equidistant 
bipolarons given by (1). The bipolaronic structure is a 2 4  CDW. in agreement with [ 121. By 
analogy with exact results obtained i n  the Frenkel-Kontorowa model [21], we searched and 
found explicitly from the numerical data in the incommensurate case (see 1221 and references 
therein), a localized form factor function b. which yields the shape of the electronic density 
by convolution with the pseudo-spin distribution ( U " ] :  

pi = bi-,,u,,. (13) 
n 

(b , )  can be interpreted as the effective shape of the electronic density associated with a 
bipolaron imbedded in the field of the other overlapping bipolarons. It is positive for all n 
and decays exponentially for large Inl. When T = 0, this function b. reduces to a &function 
at n = 0, and has a non-zero width when T # 0. This bipolaron spreads out and its size 
diverges at the critical value k c ( [ )  of the coupling constant k at which the Peierls-Frohlich 
CDW is recovered. 

t n e s e  pseudo-spin intenclions will be investigated in detail in the Holstein model in one and two dimcnsions [ 161. 
i More precisely, f o r t  =. 3'14, which corresponds to a domain largrr than the whole domain whcce the concept 
of bipolarons is physically relevant. 
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3.2. Optical phonons with dispersion: y # 0 

The essential results obtained for the original adiabatic Holstein model at large enough 
electron-phonon coupling [ 5 ]  (section 5.3, p 744), extend similarly for the same model 
with a non-zero dispersion on the optical phonon branch. However, there are some minor 
differences. There still exist infinitely many chaotic bipolaronic states, but when y is too 
large the set of pseudo-spin configurations which labels them has to be 'pruned'. 

In other words, there are pseudo-spin configurations (ut] which do not correspond to 
bipolaronic states. Because of this, the entropy of the whole set of bipolaronic configurations 
is reduced but. as proven in the above reference, does not vanish. 

This pruning effect occurs from the elastic deformations which are created around the 
bipolarons by the phonon dispersion. A consequence of these deformations is that in the 
anti-integrable limit T = 0, for large enough y (more precisely, y =- 3/10, see [51) there 
exists certain configurations of bipolarons for which the set of eigenenergies corresponding 
to the occupied electronic states overlaps the set of energies corresponding to the empty 
states. A consequence is that these bipolaronic configurations are unstable, because the 
electrons are not in their ground state. These bipolaronic structures do not exist as a local 
extrema of the total energy at T = 0, so that perturbation theory in T is not possible. 

As in the original Holstein model, the critical coupling below which each bipolaronic 
state disappears still depends on its labelling pseudo-spin configuration [ U , ) ,  but the upper 
bound of this critical coupling over all accessible bipolaronic configurations becomes infinite 
when there is pruning. 

However, even in the case with phonon dispersion, the ground state also has to be a 
bipolaronic structure at large enough electron-phonon coupling. However. then the extra 
interaction coming from this dispersion competes with the repulsive interaction of electronic 
origin, described above in the case without phonon dispersion. Unlike J,,, it does not vanish 
in the anti-integrable limit, and thus becomes the essential term at large electron-phonon 
coupling. 

Minimizing the total energy with respect to U ,  yields instead of (4), the equation: 

- ).pi - "; [U'  - y (Ui-, + U i i l ) ]  = 0 (14) 

which gives 

ui = - z d i - j p j  (154 
J 

with 

d, = 
m m g m  

and 

The lattice distortion ( U ; )  and the electronic density ( p , ]  are now related to each other 
by a convolution with a shape factor { d o ]  which depends on the details of the phonon 
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dispersion. In the anti-integrable limit (T = 0), pi = 2q with ut = 0 or 1, the energy of a 
bipolaronic configuration (ai] is not degenerate when y # 0, and becomes 

J-L Raimbaulr und S Aubry 

with 

Note that ( 1 6 ~ )  represents the energy of a bipolaronic configuration [ui) in the case that 
it exists as a metastable state. When y is positive, Jph(n) is always negative, while it has 
an alternate sign when y is negative. For the sake of simplicity, we choose to study the 
situation with y positive. which corresponds to a ferromagnetic interaction in (16a) at all 
distances. Then, choosing the chemical potential p = -U in order to fix the band filling at 
an arbitrary number c ,  the ground state of a large system of size L, is obtained by a phase 
separation in two domains, for example: 

When the transfer integral T is not zero, the effective repulsion between bipolarons 
calculated in (11) appears and competes with the bipolaron attraction (16b). This term 
increases as T increases or, equivalently, as the electron-phonon coupling h becomes 
smaller. Since at low electron-phonon coupling the Peierls-Frohlich instability appears 
very precisely as a 2 k ~  CDW, it is an interesting question to understand how the CDW 
evolves between these two regimes. 

4. Systems with one and two bipolamns: numerical analysis 

In the regime of intermediate electron-phonon coupling, it becomes much more difficult 
to analyse the interactions between the bipolarons than when close to the limit T = 0. 
These interactions cannot be strictly split as the sum of several pair contributions because 
multispin interactions are also involved. Numerical calculations, which integrate globally 
all contributions to the interaction energy, are much more reliable. Our numerical method 
consists in following continuously bipolaronic configurations characterized by (ut) and its 
energy known in the limit T = 0 as a function of T. 

The details of our technique were described in appendix A of [22]. although it was 
applied there to a different problem involving both bipolarons and polarons. Let us first 
analyse the structure of a single bipolaron and the interaction between two bipolarons when 
there is a phonon dispersion. 
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4.1. Single bipolaron 

For a single bipolaron (for example, at site 0). the electronic eigenstate (pn] is doubly 
occupied and its eigenenergy E.] is determined by the 'self-consistent eigenequation' 

- Tv"+I - T~n-1 + hunpn = E e ~ o  (18) 

where the lattice distortion U, is related to the electronic density p. = 21rp,I2 by the 
convolution ( 1 5 ~ )  with a shape factor ( d e ] .  Since for a single bipolaron U, goes to zero as 
In1 goes to CO, the electronic density pa behaves as exp(-lc,,lnl) for large n with 

Because of (15a), U, also behave as exp(-K,lnl) with K" = l / b .  Since d ,  c( eXp(-Kphlnl) 
with 6ph = 1 / ~ ~ b ,  the result of the convolution (15a) yields 

tw = Max(te1, 6ph).  (20) 

A single bipolaron exhibits two characteristic sizes. which are tel for its electronic 
density and t,, for its lattice distortion. These two sizes become equal at small enough 
electron-phonon coupling because, in (201, diverges while &,h remains constant. On the 
other hand, at large coupling they must be unequal because goes to zero. There is a 
transition point at some critical value of the electron-phonon coupling kc&). 

These characteristic lengths were measured on our numerical data as a function of k.  

1.01 ' ' ' ' ' ' ' ' ' ' i 
1 4  7 5  1 6  1.7 1.8 1.9 2.0 2.1 2 2  23 2 L  2 5  

Eiemlon.phonon coupling 

Figure 1. Inverse electronic size ucl (full curve and lattice distonion size yY (dotted curve) as 
a function of lhe electron-phonon coupling, for y = 0.1. compared to the constant ~~h (broken 
line). 

The plot of figure 1, done for a relatively small phonon dispersion y = 0.1, clearly 
shows this transition. Figure 2 shows k&). This transition line roughly determines the 
cross-over region where the range of the electronic interaction Jel becomes shorter than the 
range of the elastic interaction J p h .  
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Figure 2. Critical elecuon-phonon coupling M y )  as a function of lhe phonon dispersion 
parameter y .  

4.2. Interaction behveen two bipolarons 

Let us now calculate numerically the effective pair interaction J ( n )  between two bipolarons 
as a function of their distance (in a system with only two bipolarons). The results are 
reported in figure 3(a). 

For a moderately small value of the electron-phonon coupling k = 2 in the bipolaronic 
regimet, and for small values of the dispersion parameter y < 0.05, the interactions between 
the bipolarons remain repulsive at all distances (i.e. equation (12) is fulfilled). The ground 
state is achieved when the bipolarons are equidistant, which yields a 2 k ~  CDW. 

For all other positive values of y ,  the interaction energy versus the distance between 
the bipolarons is not a convex function because the elastic interaction mediated by the 
dispersion becomes more important. For y > 0.15, the minimum of J ( n )  is at n = 1 .  
This situation favours the phase separation that exists in the anti-integrable limit$. For the 
intermediate values of y the minimum of J ( n )  is located between 2 and 00. Other phase 
separations are favoured in that case. 

A more complete view is reported on figure 3(b) in the phase diagram ( k ,  y ) ,  where 
the domains of absolute minima of J (n )  are shown. 

The two extreme domains correspond to a minimum of J ( n )  at n = 1 (upper part of 
the figure), and to a 2kF CDW (lower part of the figure): in between some intermediate 
domains are also shown, which correspond to minima of J ( n )  between n = 1 and n = CO. 

These results with two bipolarons prove the existence of phase separations in the non- 
overlapping bipolaronic structure at low enough density, when mostly pair interactions play 
a role. When the density of bipolarons become large and when they overlap it is more 
accurate to make a direct calculation of the global structure and of its energy in order to 
get the ground state. 

5. Systems with many bipolarom: numerical analysis 

At large coupling, we know that systems with many electrons exhibit infinitely many 

t Fork > k, - 1.58 thcre is no Peicrls-Frbhlich CDW at any band filling for y = 0. 
$ Remember that. beeausc of the Pauli principle. two bipolmns c m o t  occupy the same site, 



CDW induced by phonon dispersion in ID Peierls conductors 8297 

Figure 3. (a) Interaction energy of two bipolarons as a function of their relative distance for 
various phonon dispersion pammeter y ,  and f o r k  = 2.0. (b)  Domains of absolute minima of 
the bipolaron interaction in the (k. y )  plane (see comment in text). 

bipolaronic structures represented by pseudo-spin configurations (q), among which the 
ground state lies. For a large but finite system with N sites, this number grows as exp(@N), 
where ,9 is some positive non-zero 'entropy'. When there is no pruning ( y  < 3/10, see [5 ] ) ,  
this entropy is just @ = Ln 2. The consequence is that, even when N is reasonably large, the 
number of bipolaronic configurations which have to be checked in order to find the ground 
state becomes huge and exceeds our numerical capabilities. To find the ground state, we 
restrict the family of bipolaronic configurations that are tested with empirical arguments, 
which we now describe. 

5.1. Structure of the phase diagram in the vicinity of a multiphase point 

At the point (T = 0, y = 0, /I = - U )  of the phase diagram, the energy of a bipolaron is 
exactly zero, and the interaction energies between bipolarons also strictly vanish. Any 
bipolaronic configuration is a ground state, which thus is totally degenerate. Such a 
point in the phase diagram is a 'multi-phase point', similar to those found i n  the ANNNI 
model [23,24] and other models. 
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Let us describe the scheme which usually works for describing the vicinity of a 
multiphase point when its degeneracy is raised by some perturbations. We do not specify 
the model and the type of perturbation, but review and reformulate the essential and general 
ideas. 

A standard multiphase point is at the border between two domains of stability in the 
phase diagram of two periodic phases with unit cells labelled ( A ]  and ( B )  respectively. At 
the multiphase point, the degenerate structure is described by random sequences of blocks 
(Wj} ,  where Wj is arbitrarily [ A ]  or [ E ] .  This degeneracy implies that (i) the energy per 
site of the pure phases A and B are the same; (ii) the average energy ( E A B  + E B A ) / ~  of 
the interface (. . . A A A B B B .  .) between the two periodic phases with unit cells [ A )  and 
( B )  respectively, and of the interface {. . . B B B A A A . .  .] in reverse order, is zero; and (iii) 
the interfaces do not interact, whatever their relative distance. 

When a perturbation is added to the Hamiltonian, its effect on the degenerate multiphase 
point is treated recursively at all orders of the perturbation. The degeneracy of the multiphase 
point is usually raised at the lowest significant order by the perturbation, and becomes a 
transition point characterized by equal energies per site of the pure phases A and B. At 
this transition point, the average energy of the interface (EAB + E ~ , 4 ) / 2  can become either 
positive or negative, which corresponds to the following two different situations. 

In  the first situation, F, the average energy of the interfaces ( E A B  + E B ~ ) / Z  becomes 
positive after the perturbation. Then, only pure phases A or B can be stable at the transition 
point. In that case, the multiphase point just becomes, after perturbation, a standard first- 
order transition between the periodic phase with unit cell ( A )  and the other periodic phase 
with unit cell ( B ) .  

In the second situation, D, the average energy of the interfaces ( E A B  -b EsA)/Z becomes 
negative after the perturbation. The interaction energies between these interfaces are of 
higher order in perturbation, and can be dropped at the lowest order. Then, the intermediate 
phase with unit  cell [ A B ]  obtained by juxtaposition of (A] and { B )  becomes the most stable, 
not only at a single point but in a non-vanishing domain. because the density of interfaces 
lowering its free energy is maximum. This new phase domain is inserted between the 
stability domain of the periodic phase with unit cell (A)  and the stability domain of the 
periodic phase with unit cell (6'1, with an end point at the initial multiphase point where 
the perturbation is zero. 

At the border between the stability domain of the periodic phase with unit cell [ A )  
and the periodic phase with the unit cell { A B ) ,  there is a new multiphase point where the 
degenerate structure consists in a random sequence of blocks (Wj )  where either Wi = [ A ]  
or Wi = ( A B ] .  There is also a second multiphase point with degenerate structure (Wj ] ,  
where either Wi = [ A B )  or {Wj] = [ B ]  at the border between the periodic phase with unit 
cell ( A B ]  and the periodic phase with unit cell ( B ] .  

To have this scheme, a part of the perturbation that consists of the highest-order terms 
has been dropped. These terms are considered as a new perturbation of the obtained phase 
diagram, We repeat the above analysis for each of the two new multiphase points. Each of 
them could become (independently) either a first-order transition, or generate an intermediate 
phase with two multiphase points, and so on. The construction of the phase diagram can 
be done recursively following this algorithm. 

The validity of this recursive treatment of multiphase points requires an explicit 
calculation of the perturbation at increasing order. This was implicitly done in [U], which 
focuses on a problem at finite temperature, Taking the zero-degree limit in that paper, the 
recursive construction of the phase diagram of the ground state of an king spin model 
with antiferroniagnetic long-range interactions, was obtained. In that case, situation F never 
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occurs at any order of the recursive analysis of the multiphase point and, consequently, 
there a n  no first-order transitions in the phase diagram for that model. The resulting phase 
diagram of this model contains all the possible phases that can be labelled by 1. It is an 
alternative method for recovering the Devil's staircase, which was known to exist in the 
considered model. In other models. such as the A " N I  model [24],  situation F occurs at 
some level of the scheme, but there are also branching points where first-order transition 
points become multiphase points, 

This validity of the above 'two-blocks' scheme for analysing a multiphase point may 
fail if the successive order of the perturbation terms does not decay smoothly or fast enough. 
This analysis also fails if the multiphase point itself corresponds to higher degeneracy where, 
for example, three (or more) different phases with unit cells [ A ] ,  [ B )  and (C) mix together 
arbitrarily. We have the example where a two-block construction of the ground state fails 
and where the recursive construction requires three blocks [26,27].  Then, one get more 
complicated structures which may be neither periodic nor quasi-periodic but only weakly 
periodic (e.g. see 1271). 

5.2. Farey construction of phases in the vicinity of a multiphase point 

Any of the unit cells of the periodic phases which are obtained within this scheme can be 
constructed from two initial 'blocks' { A ]  and (E] with the help of the two inflation rules 
7~ and 'T.., which define two new blocks {A ' ]  and { B ' ]  by 

i(A'1, {E')) = %([AI7 IBI) ( 2 W  

with 

(A') = ( A )  ( B ' )  = { A B ]  (216) 

We characterize all possible structures which can be obtained with these rules. 
Let us ascribe to the initial unit cells ( A }  and { B ] ,  the code 0 and 1 respectively. Infinite 

pseudo-spin sequences {oil are generated by all arbitrary products of a transformation x, 
where either ?i = TL or Z = 7 R ,  applied to each of these initial states. When the sequence 
of Z is finite, the obtained sequence (U ; )  is repeated periodically in both directions, which 
makes it an infinite sequence. According to [25], each of these infinite sequences {U;], is 
described by 1 with an appropriate choice of the number r and of the phase a. The sequence 
of block transformations 5 is uniquely determined by the continued fraction expansion of 
t. It is finite if and only if t is rational, and then {ui} is periodic. The consequence 
of this result is that the perturbations at a standard multiphase point can only yield the 
commensurate and incommensurate phases associated with pseudo-spin sequences among 
those given by 1. 

AI1 possible unit cells [n,"=, z]{i] with (i) = {O) or (1) and N finite, and their 
corresponding rational <, are obtained within a construction that follows in parallel the 
standard Farey construction of rational numbers in the interval [0, I] at order N. 
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We start initially (N = 0) from the line consisting of the sequence of two rationals 
< = 0/1 and < = 1/1 which are associated with the unit cell [O] and ( I ]  respectively, and 
we apply recursively the following algorithm. 

Let us consider the Nth line which consists or a sequence (r,"/s,") of rationals (where 
n runs from n = 1 to n = 2" + I), so that the corresponding periodic sequences 1 have 
a unit  cell denoted (Cell:)t. Then, we construct the next (N t 1)th line which contains 
2 N f '  + 1 rationals, as a new sequence of rationals obtained by inserting between every 
pair of consecutive rationals r,"/s," and r:+,/& of the old sequence, the new rationals 
(r:+r~tI)/(s~+s:tl). The unit cell of the sequence I associated with this rational number 
is just obtained as the juxtaposition [ C e l l ~ C e l l ~ + l ]  of the two parent unit cells. 

It has been proven [28] that all the rational numbers i n  the interval [0, I ]  are obtained 
in their irreducible form by this construction, and appear once and only once in each line 
when N is large enough. 

To be clearer, let us describe explicitly how these rules work for the first lines of the 
Farey construction. The first line (N = 1) is {p. f = %, i] where the new rational 
{ = 1 /2  is associated with the unit  cell (01). 

The second line (N = 2) is {p ,  $ = $, f ,  f = 5, t). The two new rationals < = 1/3 
and 2 / 3  are associated with the unit  cells (OOI] and (01 1) respectively, and so on. 

For any rational number <? = r j s  (in irreducible form), there exists a smallest N such 
that {, belongs to all lines with order 1 z N in the Farey construction. It can be written 
uniquely as (r," + rttl)/(s: + s:+,). The two rational numbers r:/s: and rt+i/.v:+, are 
called the two parents of <,. They can also be obtained from the standard continued fraction 
expansion of 0 < <, < 1 

1 
Fr = ... 

+ (IN-,+ 
I 

a,.,++ 
" M + T  

with integer coefficients 1 < a , .  By convention, the last integer coefficient a"+] in this 
expansion is 1. 

The two parents of Cr are 

1 
t r  = ... 

a' + YN-2+ 1 zT& 
I h = ... 

+ "&,+& 
and are ordered by convention such that the first one <,, has the largest denominator. 

The second generation of parents of <, is the pair of consecutive integers of the next 
upper line N - 1 of the Farey construction, the interval of which contains cr.  These two 
numbers are the parents of <,, and are, when aN > 1, 

1 
Cr9 = ... 5-72 

+ U"-,+ 
I 

w4+& 

t This is a panicular determination of the unit cell. which is not unique and depends on the p h w  01 in I 
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and are, when aN = I .  

At the second generation (, keeps only two parents, and so on. 
If a N  = 1 both (,> and c,: are principal convergent of C,, while if aN > 1, ( is 

a principal convergent but (, is only an intermediate convergent of (,. One recognizes 
here that this sequence of nth generation parents of a rational number just coincides with 
the sequence of pairs of intermediate and principal convergents considered in 1251. This 
sequence becomes infinite for an irrational number, which has an infinite continued fraction 
expansion. 

These parent commensurate structures play a role in the interpretation of the phase 
separations that were numerically observed (see sections 5.3 and 5.4). 

5.3. Phase separation in the bipolaronic phase diagram 

Turning back to our adiabatic Holstein model with dispersion, we noted that the special 
point ( T  = 0, y = 0, ji = -U) is a multiphase point in the phase diagram of the ground 
state versus T ,  y .  ji, This point is at the border line between the phase characterized by 
the pseudo-spin sequence U; = 0 for all i and the phase characterized by U; = 1 for all 
i .  With ( A ]  = 0 and ( B ]  = 1, the bipolaronic configurations labelled with the pseudo- 
spin sequences ( I )  represent the whole set of configurations that could be obtained by this 
multiphase scheme. 

Although we have no rigorous proof, we think that we should find the true ground states 
in this set for two reasons. On the one hand, at large electron-phonon coupling that is close 
to the multiphase point, the characteristic length of the interaction between the bipolarons 
goes to zero. As a result. successive orders of the perturbation series should go to zero 
very quickly. This is the ideal situation where the standard analysis described above works. 
On the other hand, in the opposite limit at low electron-phonon coupling, the bipolaronic 
configurations corresponding to ( I )  just become the whole set of Peierls-Frohlich CDU' 
obtained for all band filling, which we observed numerically below the TBA. 

Our numerical technique consists in following by continuity each of these bipolaronic 
configurations, which are explicitly known in the anti-integrable limit, and to calculate its 
energy. In practice, we start from k = 03 and y = 0 for a given (rational) band filling 

? 

( k .  y and < are the dimensionless parameters of the model, and N the total number of sites) 
and we vary by small steps either k or y or both in order to follow a continuous path. It 
might happen that the solution is lost because a discontinuity (even a small discontinuity) 
is observed in the configuration (4). However, this situation never happens when y = 0. 
Then, if a given point ( k ,  y )  in the phase diagram can be reached continuously, it is more 
efficient to vary k and then y .  In any case. if the configuration exists it is the same for any 
continuous path used for calculating it. If this point cannot be reached by any continuous 
path, we conclude that the corresponding configuration (likely) does not exist (pruning) and 
thus can be discarded in the energy tests. In practice, only commensurate systems can be 
studied, but their commensurability order can be chosen to be as large as needed. 
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Flgurc 4. Band filling ns a function of the chemical potential p for y = 0, 
values of the electron-phonon coupling k. 

and for different 

The energy per site which is obtained for each configuration for a given band filling 
does not depend on the system size, when the system is large enough. In practice, about 
100 sites appears to be sufficient to obtain reasonable accuracy in energy (better than 
This average energy is calculated for commensurate systems with band filling <, = r / s  for 
all rationals with denominators s < 15. For that purpose, the configuration {ui) and its 
energy is calculated for a system of ns sites with nr electron pairs. The integer n is chosen 
in order that ns be about 100. 

The ground state is the configuration which has the lowest energy per site. Fixing the 
sequence of pseudo-spins (1) determines a bipolaronic structure as a continuous function of 
k and y which is independent of &. For a given set (k, y ) ,  the energy (3) per site of this 
structure is a function of < and p, which can be written as 

(28) 

The density of electrons ((F) is determined as a function of p by minimizing 'I-',(() with 
respect to 5 .  If *o(<) is a convex function of F, this function is given implicitly by the 
equation 

%At) = WO(<) - 2/15. 

The electron-hole symmetry of the Hamiltonian (3) implies, after some calculations, that 
the function 

is symmetric with respect to the point < = 1/2, It is sufficient to study the band fillings 
between 0 and 1/2, and to complete the calculations by symmetry. 

When there is no dispersion ( y  = 0), q(<) is convex for any value of the electron- 
phonon coupling k. Its derivative has a discontinuity at every rational so that the function 
<(p)  is a continuous and monotonous increasing curve with a constant plateau at each 
rational. This curve is a Devil's staircase, which is expected to be complete above the 
critical values k > max( k&) and incomplete below (see figure 4). 
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It is found that the function YO(<) always becomes non-convex for any electron-phonon 
coupling k. providing the dispersion coefficient y becomes large enough (and of course 
smaller than 1/2). To study the phase separations occurring when the function Y&) is 
non-convex, it is convenient to define its convex envelope Yenv(<) as 

and the difference between this function and its convex envelope 

A(<)  = YO(<) - qenv(5)  2 0 (32) 

which is positive or zero. 
information about the phase separations in the model. 

The numerical calculation of A(() yields very sensitive 

Three regimes occur for a given k (see figure 5). 

Figure 5. A(c) as a function of band filling for k = 1.70. The three curves correspond to 
y = 0.05 (full cwve). y = 0.16 (dotted curve) and y = 0.22 (broken curve). 

In the first situation, for small enough y (the case y = 0.05 is shown in figure 3, the 
function A(<) is found to be identically zero and then Yo([) is surely a convex function. 
The function <(&) defined by (29) is a Devil's staircase. 

In the second situation when y becomes larger, the function A(<) becomes non-zero (the 
dotted curve, y = 0.16, in figure 5 ) .  We observe that it is non-zero in one or several non- 
overlapping open intervals I , ,  while it is zero outside. In addition, the ends of each of these 
intervals ofien (but not always) correspond to rational numbers which can be associated one 
with another as 'parents', according to definitions (24) and (25). If the band filling is fixed 
to a given number 5 ,  which belongs to an interval I ,  =I(-, <+[, the ground state is not the 
bipolaronic configuration labelled by (1). There is a phase separation in two domains with 
different band filling <- and [+ both labelled by (1) with their respective values of 5 .  On 
the other hand, if F does not belong to any of the interval I , ,  there is no phase separation 
and the ground state remains the bipolaronic configuration labelled by (1). 

The third situation occurs when y is large enough and becomes close to 1/2 (see for 
example y = 0.22; the broken curve in figure 5). Then, A(5) becomes non-zero in the 
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whole interval IO, 11. There are phase separations for any value of ( # 0 and # I into two 
domains. In one of the domains, the electronic band is empty, U; = 0 for all i ,  and in the 
second domain the electronic band is full, U; = 1 for all i. 

Figure 6 shows the global regions in the phase diagram ( k .  y ) ,  where (i) A(() is zero 
in the whole interval [O, I ]  (below the full curve in figure 6). Any band filling yields a 
stable CDW. There is no phase separation at any band filling. (ii) A(() is non-zero, at 
least for one c (between the full and dotted curves in figure 6). (iii) A(() is non-zero for 
all ( # 0, ( # 112 and 5 # 0. Only the hand fillings 0, 1/2 and 1 yield stable CDW 
(between the dotted and broken curves in figure 6). For any other band filling {, there is a 
phase separation into two domains corresponding to a domain with a half-filled band and a 
domain either with an empty band or with a full band. (iv) A(() is non-zero for all ( # 0 
and ( # 1 (above the broken curve in figure 6). For any band filling 5, there is a phase 
separation into a domain with an empty band and a domain with a full band. 

J-L Raimbaull and S Aubry 
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Phonon fflrpeidioo p r m e l e i  

Figure 6. Domains of variation 01 A(<) in the plme (k. y )  (see comments in the text). 

For a given irrational ( = (in practice, a rational with a large denominator which 
is a best approximation of this number, for example 5 = 34/89), figure 7 shows the 
phase diagram ( k ,  y ) .  ( i )  The domain where the ground state is a Peierls-Frohlich CDW 
(analytic hull function). (ii) The domain where the ground state is a bipolaronic CDW (with 
discontinuous hull function) with no phase separation. (iii) The domain where there is a 
phase separation. 

There is an apparently infinite cascade of phase separations inside this domain with 
transition lines that accumulate on the boundary of the stable domain of the incommensurate 
CDW. 

Considering a given rational band filling Cr = r j s ,  varying y from zero, one necessarily 
obtains a phase separation at some critical point. It is interesting to note that in many cases 
(but not in all cases), the phase separation occurs between the two parent commensurate 
phases which are the bipolaronic structures labelled by (1) obtained for the two parent 
rational numbers of 5. For larger y ,  there is another phase separation into the next parent 
phase and so on until the complete separation in phase (0) and ( I ) .  For example, figure 8 
shows magnifications where the commensurate phase with t = 511 I separates into the two 



CDW induced by phonon dispersion in I D  Peierls conductors 8305 

2 5  

2.3 i \. 1 

0 030 

). 0.cm 

a 
e 

0.010 

0.0 0.1 0.2 0 1  0.4 0.5 0.6 0 7  0.8 0.9 1 0  
Bandtilling 

0.000 

Figure 8. Separation of the commensurate phwe 5/1 I far k = 1.70 into its parent phases (lower 
figure- y = 0.12 (full curve) Md y = 0.16 (dotted curve)) or into its non-parent phases (upper 
figure: y = 0 19 (full curve) and y = 0.22 (dotted curve)). 

parent phases with 5- = 419 and <+ = 112, then into the next parent phases 5- = 3/7 and 
{+ = 1/2 (lower figure). 

Continuing to increase y we did not observe phase separations, neither into the parent 
phases <- = 215 and <+ = 112 nor into the next pair of parent phases t- = 113 and 
{+ = 112, but instead we observed directly the phase separation into two phases with 
{- = 0/1 and f+ = 112 and finally with 5- = 011 and <+ = 1/1 (upper figure in figure 8). 

Another example is 5 = 113, which does not follow this criteria of parent phases. The 
successive phase separation occurs between 5- = 0/1 = Cste and {+ = 411 1, then with 
{+ = 318, {+ = 2J5, <+ = 4j9, r+ = 112 and finally C+ = 111. 

5.4. A toy modelfor the bipolaronic phase separations 

An understanding of these cascades of phase separations requires a detailed knowledge of the 
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interactions between bipolarons for every value of the parameters of the model, knowledge 
which we do not have. For a better understanding of the obtained results. it is useful to 
introduce a 'toy' model that can mimic some of the observed behaviour. It is simply a 
schematic pseudo-spin model with Hamiltonian 

J - L  Raimbaul! and S Aubry 

where ui = 0 or 1 and the pair interactions J ( n )  = J&) + Jph(n) for two bipolarons 
at distance n. Only pair interactions between the bipolarons are taken into account as 
the sum of two competing terms according to the qualitative ideas suggested in section 2. 
The first term J&) represents the interaction due to the overlap between the electronic 
wavefunctions of the bipolarons. It is supposed to be repulsive at all distances. The second 
term J,,h(n) represents the interaction due to the phonon dispersion. When y > 0. this 
contribution is attractive at all distances. Both interactions should decay exponentially as a 
function of In[, but with a different rate. We propose the following simple choice: 

Jel(n) = JI  (34)  

(35) I"l = ;J2qph 

with J I  and Jz positive. This Hamiltonian contains four parameters, J l >  J2, 0.1. qph, which 
should depend in some complex way on those of the initial Hamiltonian. The limit point 
vel = V p h  = 0 and p = fro = i J ( 0 )  is a multiphase point which can be Formally analysed 
as explained above. We just have to select the ground state of (33) among the sequence ( I )  
where the parameter < is determined by minimizing the average energy per site of (33) 

(36) 

where K ( n )  = J ( n  + I )  + J ( n  - I )  - 2 J ( n )  and ~ ( c u )  is defined [20] as the continuous 
function 

1 
*v , (~ )  = *OK) - 2~ = 2 K(n)(o(n<) - ~ ( I L  - 

ti 

p(x) = x Int(x) - fInt(x)(Int(x) + I ) .  (37) 

The derivative has a right determination *A+(<) and a left determination *A-(<): 

corresponding to the left and right determination of the function integer part of x (Int ( x ) )  
respectively. *A(<) is just a sum of step functions with discontinuities at every rational. 
The amplitude of the discontinuity at < = r / s  where r and s are irreducible integers depends 
only on s: 

*A+(<) - *A-(<) = S(S) = C n s K ( n s ) .  (39) 
n>O 

When J ( n )  is a convex function of n,  i s  when (12) is fulfilled, K ( n )  is positive for all 
n and this derivative is monotone increasing. The function *'a(<) is convex and the curve 
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( ( p )  which is implicitly determined by Qh(() = 2(p - PO) is a complete Devil's staircase. 
The width of the plateaus at rational ( = r / s  is given by (39) as $(s) > 0. Then, it was 
indeed proven rigorously [17-201 that the ground state is given by the sequence (1) and 
that ( ( p )  is a complete Devil's staircase. 

When J ( n )  is not a convex function, 

may become negative for some values of s. The function Q&) is non-convex if and only 
if S(s) is negative for some values of s. 

'$,,(() may become non-convex in different ways. Below we describe two of them. 

Example I 
S(s) can first become negative for large s S where the integer bound S is assumed 
to decrease from 00 when the model parameter varies beyond the threshold of convexity. 
There are phase separations which first occur for the incommensurate phases and the high- 
order commensurate phases in decreasing order. More precisely, this situation is achieved 
when Jz c Jl and when q p h / q e l  varies continuously and crosses 1 from below. As soon 
as qph =- vel, S(s) is surely negative for s large enough. WO(() is non-convex in infinitely 
many open intervals associated with all the rationals r / s  with high-order s. Beyond the 
stability threshold, the width of these intervals grows so that they overlap. Figure 9 shows 
the difference A(() = Q&) - Ye&) for several values of qph and all rationals with 
denominator s smaller than 20. If one looks at the behaviour of a given Commensurate 
phase, it just undergoes the cascade of phase separations into its successive parent phases 
as described above, 

Figure 9. A({) as a function of the band filling for the toy model (h = ~ = 0.2. qd = 0.6). 
The curves comymnd Io the following cases: ?ph = 0.70 (full curve), qph = 0.15 (dotted 
curve), qph = 0.80 (broken curve), qph = 0.85 (long-dash curve); see example 1 in the text). 

For the incommensurate phases, this cascade of phase separations has to be infinite with 
an accumulation point at rlph/q.l = 1. In that situation, the low-order commensurate phases 
appear to be the most 'robust' phases. 
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Example 2 
q ~ ( < )  may become non-convex in another way. When the model parameters vary beyond 
the convexity threshold, S(s) can first become negative for small s < S. This situation 
is obtained when JZ increases while qph < vel. Unlike the previous case, the low-order 
commensurabilities and their neighbourhood start to be the first unstable phases (see A((), 
figure 10). 

1 

Figure 10. A(<) as a function of the bmd filling for the toy model (Jt = 0.2. qrl = 0.8, 
qph = 0.6). The curves colrespond lo the following cases: Jz = 0.30 (full curve), 52 = 0.35 
(dotted curve). 52 = 0.40 (broken c u m ) ,  Jz = 0.45 (long-dash curve): see example 2 in the 
text. 

A(<) is strictly positive in a finite number of open intervals]<-. <+[ around a few simple 
rationals (,. The corresponding low-order commensurate phases Cr separate into high-order 
commensurate phases or possibly incommensurate phases with commensurability <- and {+ 
which both depend continuously as a Devil's staircase on the model parameters. 

There are other more complicated situations where, for example, K ( n )  oscillates at 
infinity with a non-constant sign. A simpler case is when K ( n )  alternates its sign for large 
n .  This situation is found in the adiabatic Holstein model at large coupling and when the 
phonon dispersion is negative ( y  i O), which yields qpb < 0. Then, the cascade of phase 
separations for the incommensurate and commensurate structures should follow different 
schemes involving, for example, the 'parity' of the rationals r and s or other rules. We did 
not study all these possible schemes. 

We now return to the adiabatic Holstein model with positive dispersion ( y  > 0). When 
varying y from zero, we note that the first unstable phases appears in the vicinity of the 
simple commensurate phase t = 0 (and equivalently of the commensurate phase < = I by 
the symmetry argument). A non-vanishing stability domain for these commensurate phases 
is preserved for any values of the parameters (k and y) .  The unstable phases correspond to 
a connected open interval IO. <+[ (and its symmetric one close to 1) where A(<)  is strictly 
positive and WO(<) is non-convex. 

The edge of this interval {+ versus y apparently varies as a Devil's staircase for small 
<+ < 3/7. Until this point, the behaviour of the phase separations can be qualitatively 
described within the scheme of example 2, 
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Beyond this point, for larger values of y ,  the function A(<)  becomes strictly positive 
in several disconnected intervals which all g rad  with y .  When they are narrow, these 
intervals open close to high-order rationals. If we consider any commensurate phase in the 
interval ]3/7, 1/2[, we find that it undergoes a cascade of phase separations following (at 
the beginning) its sequence of commensurate parent phases in a way qualitatively similar 
to those described in example 1. 

These observations show that the discontinuity S(r,s)  of YA({) at the rational r / s  
not only depends on s but must also depend on r since the phase separations do not occur 
simultaneously at all rationals that have the same order. A consequence is that the interaction 
between the bipolarons cannot be uniquely described by pair interactions as in Hamiltonian 
(33), because this would imply S(r. s) is independent of r .  An accurate description of 
the phase separation necessarily requires a pseudo-spin Hamiltonian (33) with multispin 
interactions. 

6. Concluding remarks 

Real quasi-one-dimensional CDW are, in fact, three-dimensional systems containing one- 
dimensional chains that interact one with another not only through the overlaps between the 
electronic orbitals of nearest-neighbour chains but also through the elastic coupling between 
the chains. The transverse overlap is weak by definition, which make the bipolarons very 
anisotropic. They are rather well localized on single chains, although they could be quite 
extended along these chains. The bipolaron interaction, which is produced by this interchain 
overlap. can be neglected at least qualitatively. More important are the interactions due to 
the dispersion of the phonon branch in the direction transverse to the chains, which have no 
special reasons to be weak since they participate in the 3D crystal cohesion. These elastic 
interactions introduce interchain interactions between the bipolarons. Although a precise 
3D analysis appears quite difficult, the present study suggests that the phonon dispersion 
can also induce non-convex forces between the bipolarons and generate complex phase 
separations in 3D. 

For a standard CDW with no phase separation, the Coulomb forces generally play a 
minor role compared to the electronic driving force which produce the CDW instability*. 
By contrast, and because they are long-range forces, the Coulomb forces become essential 
for determining the bipolaronic structure in the event that there would be a phase separation 
between bipolaronic CDW with different electronic densities, as we will now see. 

6.1. 
separation 

Let us assume that, without Coulomb forces, the CDW~exhibits a phase separation between 
phase A with electronic density f- and phase B with electronic density f+. Whatever the 
short-range bipolaron interactions are, no phase separation into two macroscopic domains 
as described above is possible in a real system. Then, the density of Coulomb energy 
involved in this phase separation would diverge. The electric neutrality of the system 
forces the density of bipolarons to be uniform at the macroscopic scale and equal to f .  
The divergency of the Coulomb energy can be removed by forming a microstructure which 

Non-2kp bipolaronic CDW as a consequence of the Coulomb forces on a phase 

t When these local inrendions 31e important they must be described at the microscopic level by Hubbard terms 
in rhe Hamiltonim. As a result. the nature of the CDW changes and becomes. for example. a spin density wave 
or a spin Peierls state 
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alternate domains of phase A and B .  This domain superstructure then does not appear as a 

Even if it is assumed that both the short- and long-range interactions are known, finding 
precisely the resulting bipolaronic structures is in general quite difficult. However, we can 
get an intuitive idea of what it could be by a quite phenomenological approach. A simple 
choice is to assume that the superstructure consists of domain stripes A and B with thickness 
LA and LB. Then, this superstructure involves only one main vector of modulation Q and 
its harmonics. The length of the unit cell L = LA + L E  = z?r/lQl of the superstructure 
along the wave-vector Q is assumed to be a continuous parameter, which means that at this 
stage we discard any effect of the lattice discreteness or any commensurability effect on Q. 
The ratio c. = L A / L B  is fixed as c = ({+ - { ) I ( {  - {-) in order that the electronic density 
be {. 

The contribution to the energy density due to the presence of these interfaces A B  and 
B A  depends on their orientation if, as we pointed out, there are local interchain interactions 
induced by some phonon dispersion. The energy per unit surface for a pair of interfaces A B  
and B A  (supposed to be far apart and non-interacting) is eAB(Q) and the average interface 
energy per unit volume is e~~(&)IQl/2rr where Q represents the unit vector parallel to Q. 

The Coulomb energy @caul for a 3D charge density p(r) with Fourier transform p ( q )  
is 

2 k ~  CDW. 

where c(q) is the dielectric constant of the material at wave-vector q ,  which we can assume 
to be independent of q (for small q). The main pan of the Coulomb energy of the structure 
per unit volume is given by its main harmonics and scales as K / I Q ~ ~  where K is roughly 
proportional to the square of the charge modulation between the two phases A and B .  

The minimum of the total energy 

with respect to Q is obtained for a certain orientation of the wave-vector modulation 4 and 
a certain length Q. The orientation of Q is entirely determined by the dispersion curves 
of the phonons in the direction perpendicular to the chains. A priori, it is not necessarily 
a simple direction of the crystal. The length of the wave-vector modulation is fixed to a 
non-zero and finite value, because of the Coulomb energy. 

If the crossing energy between two interfaces A B  and B A  is positive, the above solution 
with a single modulation wave-vector looks appropriate. If this crossing energy is negative, 
the minimization of the total energy would be better obtained by a microdomain structure 
which is modulated in two directions with, for example, two symmetric wave-vectors. We 
do not discuss this more complex situation. 

In the regime of strong electron-phonon coupling, the first-order transition between 
phases A and B becomes very sharp with very different electronic densities (for example, 0 
and I )  even for a moderately small phonon dispersion. The interface energy eAB becomes 
relatively large compared to the Coulomb energy. The phase separation and the resulting 
structure should appear with relatively large microdomains experimentally observable. 

In the opposite case. when the system is close to the borderline of phase separation 
in parameter space, the phases A and B become almost identical with nearby modulation 
wave-vectors. The interface energy e A B  becomes small compared to the Coulomb parameter 
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IC. The phase separation should result as small microdomains with a size of a few unit cells 
with thick interfaces AB and BA comparable with their relative distance. It then becomes 
not quite appropriate to speak about a phase separation in that case. It is better to say that the 
bipolaronic structures reordered as a new CDW with a wave-vector which is not zk~ .  those 
of the standard Peierls CDW. One could also perhaps better interpret the new CDW as a 
perturbed Peierls CDW with a superstructure of advanced and delayed discommensurations 
changing the initial periodicity. 

6.2. Are the real CDW bipolaronic? 

After almost two decades of intensive study, both experimentally and theoretically, the 
standard Peierls-Frohlich theory and its improvements including the role of impurities, still 
fail to yield a consistent interpretation of the whole set of observed features, in real quasi- 
one-dimensional CDW. The eminent specialist P Monceau pointed out in the conclusion 
of his review paper [31]: 'The general properties of these states (CDW) are more or less 

However, in spite of all these efforts most o j the  fundamental questiom remain 
unsolved'. 

Beside the fact that the existence of bipolaronic CDW is now well founded on a solid 
theoretical basis, the bipolaronic theory of CDW is not yet developed enough for practical 
predictions in real compounds. However, the richness of the new phenomenology, which 
remains to be explored through a bipolaronic approach of real CDW, should motivate more 
efforts to find new theories of the real CDW which could be more satisfactory than standard 
Peierls-Frohlich theory. We cannot discuss now the whole set of experimental facts observed 
in most (or all?) real CDW which are in disagreement with standard Peierls-Frohlich theory 
and which could support a bipolaronic theory (with an electron-phonon coupling generally 
in the intermediate regime). We mostly focus here on the specific problem concerning the 
anomalous value observed for the wave-vector of the CDW in (TaSe&I. 

Let us note, however, that although the concept of a bipolaron is easy to define in the 
limit of large electron-phonon coupling, this concept becomes physically useless. Indeed, in 
that limit the bipolarons are nothing other than well localized chemical covalent bonds which 
are strongly pinned to the structure up to the crystal melting temperature. Although in the 
limit of a very large electron-phonon coupling the phase separation of CDW almost surely 
occurs, the so-called resulting bipolaron ordering is nothing but the true crystal structure. 

The physically interesting systems are those in the intermediate range of electron- 
phonon coupling, where the bipolarons extend significantly beyond the single sites or bonds 
and are weakly pinned to the lattice so that we can expect interesting phase transitions by 
melting of the bipolaron structure (before the whole crystal). This situation does not occur in 
isotropic 3D systems because, in most cases, the bipolarons are necessarily well localized 
and pinned to the lattice. There is a first-order transition between a strongly localized 
bipolaron and the extended (non-localized) electrons. In fact, the bipolaron formation is 
greatly favoured in quasi-ID systems or, more generally, when the Fermi surface has good 
nesting properties. In the intermediate coupling regime, the bipolarons can exist while 
relatively extended and weakly pinned to the lattice. Up to now. no bipolaronic structures 
have been experimentally recognized because, concerning their structural aspect, they could 
be easily confused with Peierls-Frohlich CDW. 

In the literature, the observed wave-vector of most CDW at OK is generally found to be 
consistent with the 2kF wave-vector, which can be expected from a knowledge of the band 
filling. For example, blue bronze has been analysed in detail. We picked from [9] and 1361, 
the values of the parameters (bandwidth, band filling, Peierls gap and phonon dispersion 
parameter) obtained either from real experiments or from band calculations, which have 
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to be used in our model to describe this material. The parameters of blue bronze are 
represented by an asterisk on figure 1 I .  One notices the following two points. 

(i) The ratio of the electronic gap (at OK) to the bare bandwidth is larger than 0.1, 
which is the threshold of existence for the Peierls-FrBhlich CDW. As well as most other 
real CDW where this parameter may be known, blue bronze is well inside the domain of 
bipolaronic CDW far away from a Peierls-Frohlich CDW. 

(ii) Although close to the borderline. blue bronze is still in the region where there is no 
phase separation. 

Figure 11. Phase diagram in the (2A /4T. y )  plane. We choose h e  ratio of the Peierls gap ZA 
with the bare bandwidth (which is easier to estimate in real systems) instead of the dimensionless 
electron-phonon coupling constant k.  The parameters of blue bronze are represented by the 
symbol r. 

This is in agreement with the fact that the observed 2 k ~  vector of blue bronze agrees 
with known band fillingt. This remark makes it hard to believe that blue bronze is indeed a 
Peierls-Frolich CDW at OK. (Note, however, that a theory for the behaviour of bipolaronic 
CDW as a function of temperature is missing, for a better understanding of the thermal 
behaviour of blue bronze and other CDW.) 

Up to now, only one system (TaSe&I [301 is known where the standard interpret&m 
for the observed value of the modulation wave-vector of the CDW poses a serious problem. 
It is known that there are two free electrons for four Ta atoms per chain in the unit cell, 
The 2 k ~  CDW should have a period containing four Ta atoms along one chain, which 
means that 2 k ~  should be equal to c'. Because of this commensurability, the CDW should 
appear in diffraction spectra at the spots of forbidden Bragg peaks (space group 1422). 
In addition, this commensurate CDW should be pinned to the lattice and the material 
should be a strong insulator. In fact, the observed value for the CDW wave-vector is quite 
different. It is 0.085~' along the chain and there are also unusual transverse components 

t Three electrons per cells are supposed to be shared between two almost equivalent electronic bands. The 
wave-vectors of the two bands lock one with each other at the average wave-vecwr 3/4b' [33]. 
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0.05a' and 0.05b't. Lorenzo and co-workers [301 suggested that an antiphase arrangement 
due to Coulombic repulsion on adjacent chains lead to a CDW wave-vector at fa* + c* 
(or fb"  + c*) ,  while some attempts of interpretation for the small deviation of the actual 
CDW wave-vector, symmetry breaking between chains or lattice-mode interactions, have 
been proposed (see references in [30]). Otherwise, neutron scattering experiments in this 
compound exhibited neither any significant phonon softening nor any phason mode, but only 
a quasi-elastic diffusion around the transition point, which supports the idea that this CDW 
could be bipolaronic [29]. Concerning all the other experiments done, this compound shares 
the typical properties of the other I D  CDW, for example the non-linear behaviour of charge 
transport and the glassy behaviour observed through heat transport measurements (321. 

If the CDW were commensurate, it could be viewed as an array of equidistant bipolarons 
in each unit cell. This bipolaronic sequence could be labelled by the periodic coding 
sequence (. . ~000100010001. . .) along the chain of tantalum (which contains four atoms 
per unit cell). The occupied Ta sites are coded by 1 and the unoccupied sites by 0 (they 
might not be sites but Ta-Ta bonds). We have no estimation of the elastic interactions 
between the bipolarons which could be mediated by the 3D dispersion of the phonons 
coupled to the conducting electrons of this material. If we assume that these interactions 
are large enough, we may find an explanation for the fact that a non-2kp CDW structure 
also resulting from the Coulomb forces can appear, Following the above arguments, we 
should be in an intermediate regime for the electron-phonon coupling, the phase separation 
of the CDW should not be sharp, i.e. the system is close to the boundary of the domain of 
phase separation (see figure 11). One can expect that the Coulomb forces will maintain a 
CDW in a configuration close to the standard UC, configuration, but with some 'alterations'. 

We can make our idea more precise by a simple example (which does not presume 
about the real bipolaron ordering in the CDW of (TaSe.&I). One of the smallest alterations 
that would change the CDW wave-vector into c'/12 = 0.0833~'  (close to the real 
value 0.085) has a unit cell containing 12 unit cells of the underlying crystal coded as 
[ 0001 000 1000 100 1000 IO00 1000 1 000 1000 10000 1000 1000 I ) ,  This structure is obtained by 
a phase shift of the middle part of the supercell structure, which can be viewed as a 
pair of advanced and delayed discommensurations. It can be also viewed as alternate 
domains with commensurability 6/23 and 6/25, which makes 1/4 in average. This example 
suggests that even a small alteration of the bipolaronic CDW is enough to change its wave- 
vector to the observed value. In addition, it creates discommensurations that are more 
mobile because their pinning is much weaker than those of the commensurate CDW. These 
discommensurations make the CDW more 'plastic' and allows it to cany a non-linear electric 
supercurrent. 

The convolution of such a sequence [uj] by a shape factor (13) extended over few unit 
cells, yields the electronic density (p i ] .  A second convolution of the electronic density with 
the lattice shape factor yields a lattice modulation which can become quite close to a sine 
function, although the CDW is supposed to be bipolaronic. There are many other possible 
arrangements of the bipolaronic structure in 3D, including incommensurate structures. In 
the future it should perhaps be possible to determine experimentally (by very accurate x-ray 
synchrotron experiments on the whole set of diffraction spots and their harmonics) both 
these shape factors and the comesponding exact 3D bipolaronic distribution. 

t Recent experiments 1351 have shown that doping (TaSedzl with isoelectronic impurities Nb substituted to Ta 
induces impanam variations of the CDW wave-vector. Since the band filltng is supposed to be unchanged by 
doping, this result can be considered as experimental proof that the wave-vector of the CDW of (TaSe4)d is not 
2kF. 

-. 
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In summary, we have proven on a specific I D  model that the dispersion of the phonon 
branches involved in the formation of a CDW can induce phase separations at OK for the 
ground state of a 2kF bipolaronic CDW. for a parameter range that is physically reasonable. 
We have then shown that the Coulomb forces should reconstruct a new bipolaronic CDW, 
with a wave-vector that could be quite different from 2kF. Finally, we suggested that 
the unexpected wave-vector of the CDW of (TaSe&I could be explained on the basis of 
the main idea supported by this paper, i.e. at large or even at moderate electron-phonon 
coupling the bipolaronic CDW ordering not only results from the Z k p  Peierls instability but 
also on both the elastic and Coulomb forces which could favour another CDW ordering. 
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